• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium
  • SmallSat Europe

SatNews

  • HOME
  • Magazines
  • Events
  • SV SPACE WEEK UPDATES
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Astroscale’s ADRAS-J demos space debris observations

July 30, 2024

Astroscale Japan Inc. (“Astroscale Japan”), a subsidiary of Astroscale Holdings Inc. (“Astroscale”), has revealed that the company’s commercial debris inspection demonstration satellite, Active Debris Removal by Astroscale-Japan (ADRAS-J), has achieved a technical milestone for a commercial company: the controlled fly-around operations of the space debris — a rocket upper stage — capturing images from various angles and lighting conditions while maintaining a controlled fixed-point relative position of approximately 50 meters from the upper stage.

Screenshot

ADRAS-J is the world’s first attempt to safely approach, characterize and survey the state of an existing piece of large debris through Rendezvous and Proximity Operations (RPO). This groundbreaking mission has rendezvoused with an unprepared Japanese upper stage rocket body that is approximately 11 meters long, 4 meters in diameter, and weighs approximately 3 tons.

After demonstrating safe approach and proximity operations with the object that is the size of a city bus, ADRAS-J has been gathering images and other data to assess its movement and structural condition. Unprepared objects in orbit are not designed with any technologies that enable docking or potential servicing or removal, heightening the complexity of operations.

The information gained from these images will provide essential data that will support a future mission to capture and remove the object.

During the first fly-around observation in June, ADRAS-J was approximately one-third through the maneuver (~120 degrees) when an unexpected attitude anomaly triggered an autonomous abort. ADRAS-J safely maneuvered away from the upper stage as designed, demonstrating the effectiveness of its on-board collision avoidance system in safely approaching a non-cooperative object. ADRAS-J then re-approached the upper stage and demonstrated two successful fly-around observations.

Watch the time lapses taken during fly-around operations:

Telephoto on July 15: https://www.youtube.com/shorts/bKKkkX-7fn8
Wide-angle on July 15: https://www.youtube.com/shorts/Wk2N9Ldh-SA
Telephoto on July 16: https://www.youtube.com/shorts/V_dW4PC139Q
Wide-angle on July 16: https://www.youtube.com/shorts/hXg_Jt4ni8I

Satellites and debris objects in low Earth orbit (below 2,000 km) travel at speeds of approximately 7 to 8 km per second, highlighting the challenge of locating, approaching, orbiting around, and gathering data from objects at this altitude. These capabilities are the baseline for on-orbit servicing and the achievements from the ADRAS-J mission will herald a new era in RPO missions, paving the way for future on-orbit services while laying the foundation for a sustainable space environment.

The ADRAS-J spacecraft was selected by the Japan Aerospace Exploration Agency for Phase I of its Commercial Debris Removal Demonstration program, aimed at demonstrating technologies for removing large debris. Astroscale Japan was also selected as the contracting party for Phase II, which will involve the capture and deorbit of the upper stage.

Development of the ADRAS-J2 spacecraft is underway, and the heritage of the ADRAS-J spacecraft and operations, along with the data collected, will be utilized for the removal phase of the program. The three fly-around operations have revealed no major damage to the payload attach fitting, which is the planned capture point for the ADRAS-J2 mission.

Since the launch in February, the major ADRAS-J mission highlights include:

  • Feb. 18: launch and start of in-orbit operations.
  • Feb. 22: start of rendezvous phase.
  • Apr. 9: start of Angles Only Navigation and proximity approach from several hundred kilometers.
  • Apr. 16: start of Model Matching Navigation relative navigation techniques.
  • Apr. 17: approach to the client within several hundred meters.
  • May 23: approach to the client within 50 meters.
  • May 23: first fixed-point observation completed.
  • Jun. 17: second fixed-point observation completed.
  • Jun. 19: start of fly-around operation and validation of collision avoidance system.
  • Jul. 14: approach to the client within 50 meters. Third fixed-point observation completed.
  • Jul. 15: successful second fly-around observation.
  • Jul. 16: successful third fly-around observation.

Filed Under: Active Debris Removal (ADR), ADRAS-J (Astroscale), Astroscale, Astroscale Japan, Debris Tracking, News, On-Orbit Services, On-Orbit Servicing, On-Orbit Support Vehicles, Orbital Debris, Orbital Space Debris, SmallSat, smallsats, Space Debris, Space Debris Detection, Space Debris Mitigation

Primary Sidebar

Most Read Stories

  • SpaceX prepares Starship for 11th flight test on the 13th using a new engine configuration
  • AST SpaceMobile announces BlueBird 6 ready to ship
  • UPDATE: Amazon's Project Kuiper and the latest news of their satellite internet constellation
  • United Launch Alliance launches Amazon’s Project Kuiper 3 mission sending 27 operational broadband satellites connecting the world 
  • Rocket Lab's HASTE to test hypersonic technology on suborbital flight for government's top secret JUSTIN mission

About Satnews

  • Contacts
  • History

Archives

  • October 2025
  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!