• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Rocket Lab’s New Zealand success deploys satellites to separate orbits 500km apart for KAIST and NASA

April 23, 2024

Following payload deployment to two separate orbits, Electron’s Kick Stage completed a final engine burn to lower its altitude and speed up its reentry to help reduce space junk.

Rocket Lab USA, Inc. (Nasdaq: RKLB) , a global leader in launch services and space systems, today deployed two satellites to two different orbits approximately 500km apart on its 47th Electron mission.

The ‘Beginning Of The Swarm’ (B.T.S) mission lifted-off from Rocket Lab Launch Complex 1 in Mahia, New Zealand at 10:32 NZST on April 24th, 2024 with payloads for the Korea Advanced Institute of Science and Technology (KAIST) and NASA. The primary payload, NEONSAT-1 by KAIST, was first deployed by Electron to a 520km circular Earth orbit before Electron deployed NASA’s Advanced Composite Solar Sail System to a higher circular orbit at 1,000km.

NEONSAT-1 will perform Earth-observation of the Korean Peninsula for KAIST, which will then pair the satellite’s data with artificial intelligence to monitor for natural disasters in the region. NEONSAT-1 is the first of 11 satellites for KAIST’s planned constellation to image the Korean Peninsula several times daily.

The second mission deployed today was NASA’s Advanced Composite Solar Sail System, which is a technology demonstration of new materials that use sunlight to propel a spacecraft. Much like a sailboat is powered by wind pushing against a sail, solar sails employ the pressure of sunlight for propulsion to move around. This mission plans to test how well new composite booms unfurl the sail from the spacecraft – which is about the size of a toaster – to an area about the size of a small apartment. Data from this mission will be used for designing future larger-scale composite solar sail systems for space weather early warning satellites, asteroid and other small body reconnaissance missions, and missions to observe the polar regions of the Sun.

The capability to deploy two satellites more than 500km apart on the same launch is enabled by Electron’s Kick Stage, a small stage with engine relight capability to enable last-mile delivery. After deploying NEONSAT-1, Electron’s Kick Stage completed multiple in-space burns of its Curie engine to raise its apogee and circularize its orbit before deploying the Advanced Composite Solar Sail System spacecraft. The Kick Stage then completed a [fourth] and final engine light to perform a deorbit maneuver that returned the stage closer to Earth to speed up its eventual deorbit, helping to reduce long term orbital debris.

Today’s successful mission was Rocket Lab’s fifth launch of 2024, continuing Electron’s streak as the United States’ second-most frequently launched rocket annually.

Details of Rocket Lab’s next Electron mission will be announced shortly

Rocket Lab’s ‘Beginning Of The Swarm’ mission launch window is open and ready for business

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-22-at-10.57.17-PM.png

All is ready for the window of opportunity to occur during a 14-day launch window that opens on April 24th in order to launch Rocket Lab’s Beginning of the Swarm mission for South Korea and NASA. Rocket Lab Launch Complex 1 in Mahia, New Zealand is the site in which the Electron will carry two satellites for two separate customers: NEONSAT-1, an Earth observation satellite for the Satellite Technology Research Center (SaTReC) at the Korea Advanced Institute of Science and Technology (KAIST), and NASA’s Advanced Composite Solar Sail System (ACS3).

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-22-at-6.56.48-PM-1-492x1024.png

Rocket Lab updates ‘Beginning Of The Swarm’ mission for Korea’s KAIST and NASA’s ACS 3

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-21-at-10.53.07-PM-1024x566.png
This latest mission will see Rocket Lab perform multiple in-space engine burns to deploy two payloads to separate orbits several hundred kilometers apart.

Rocket Lab USA, Inc. (Nasdaq: RKLB) has set the launch window for its next Electron launch.

The ‘Beginning Of The Swarm’ mission is scheduled to launch from Rocket Lab Launch Complex 1 in Mahia, New Zealand during a 14-day launch window that opens on April 24th. Electron will carry two satellites for two separate customers: NEONSAT-1, an Earth observation satellite for the Satellite Technology Research Center (SaTReC) at the Korea Advanced Institute of Science and Technology (KAIST), and NASA’s Advanced Composite Solar Sail System (ACS3).

The primary payload for this mission, NEONSAT-1, is an Earth observation satellite with a high-resolution optical camera designed to monitor for natural disasters along the Korean Peninsula by pairing its images with artificial intelligence. NEONSAT-1 is the first satellite developed under the NEONSAT program by SaTReC and KAIST, Korea’s leading university in science and technology, which developed and operated Korea’s very first satellite KITSAT-1 more than 30 years ago. Other NEONSAT satellites are planned to be launched in 2026 and 2027 to build out the NEONSAT constellation. The program is a collaboration across multiple Korean academic, industry, and research institutions including SaTReC in KAIST, which is leading the program’s system design and engineering; the Satrec Initiative, a Korean satellite manufacturer that has successfully developed seven previous remote sensing satellites for low Earth orbit; and the Korea Aerospace Research Institute (KARI), which is managing the mission’s ground segments and technology supervision for the NEONSAT program. NEONSAT is funded by the Koren government’s Ministry of Science and ICT (MSIT).

NASA’s ACS3 is a technology demonstration of new materials and deployable structures for solar sail propulsion systems that use sunlight to propel the spacecraft. Much like a sailboat is powered by wind pushing against a sail, solar sails employ the pressure of sunlight for propulsion, eliminating the need for conventional rocket propellant. The mission plans to test the deployment of new composite booms that will unfurl the solar sail to measure approximately 30 feet per side, or about the size of a small apartment in total. Flight data obtained during the demonstration will be used for designing future larger-scale composite solar sail systems for space weather early warning satellites, asteroid and other small body reconnaissance missions, and missions to observe the polar regions of the sun. The ACS3 was designed and built at NASA’s Langley Research Center in Hampton, Virginia, and the technology demonstration is managed and funded by the Small Spacecraft Technology program at and with NASA’s Ames Research Center in Silicon Valley. NASA’s Science Mission Directorate, interested in larger solar sail missions in the future, is funding an extended operations component to execute a series of maneuvers to raise and lower the spacecraft’s orbit, demonstrating the practicality of solar sailing.

The capability of Electron’s Kick Stage to perform multiple engine burns in space and deploy individual satellites to unique orbits is critical to this mission. The Kick Stage will first ignite its Curie engine to deploy NEONSAT-1 to its target 520km circular Earth orbit. After the payload’s separation, it will ignite its Curie engine again to perform an apogee raise to 1,000km. Once in this phasing orbit, the Curie will ignite a third time to circularise before deploying the solar sail demonstration spacecraft. The Kick Stage will then ignite Curie a fourth and final time to perform a deorbit burn that returns the Kick Stage closer to Earth, speeding up its eventual deorbit and removal from space to support a more sustainable space environment. Rocket Lab has demonstrated similar orbit raises, inclination changes, and deorbit maneuvers across previous Electron missions and most recently with its successful spacecraft re-entry for Varda on February 21, 2024.

‘Beginning Of The Swarm’ will be Rocket Lab’s fifth mission of 2024 and the 47th Electron launch overall.

‘Beginning Of The Swarm’ details:

  • Launch window: opens no-earlier-than April 24, 2024.
  • Customers: The Korea Advanced Institute of Science and Technology (KAIST) and NASA.
  • Satellites: NEONSAT-1 for SaTReC/KAIST and the Advanced Composite Solar Sail System (ACS3) for NASA.
  • Target orbits: NEONSAT-1 to 520km circular Earth orbit, ACS3 to 1,000km circular Earth orbit.
  • Launch broadcast: The launch will broadcast live at www.rocketlabusa.com/live-stream

Rocket Lab schedules Electron launch Beginning Of The Swarm with NASA’s ACS3 and NEONSAT-1

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-18-at-6.50.36-PM.png
This image has an empty alt attribute; its file name is Screen-Shot-2024-04-18-at-6.48.49-PM-980x1024.png

The ‘Beginning Of The Swarm’ mission is scheduled to launch from Rocket Lab Launch Complex 1 in Mahia, New Zealand during a 14-day launch window that opens on April 24th. Electron will carry two satellites for two separate customers: NEONSAT-1, an Earth observation satellite for the Satellite Technology Research Center (SaTReC) at the Korea Advanced Institute of Science and Technology (KAIST), and NASA’s Advanced Composite Solar Sail System (ACS3).

The primary payload for this mission, NEONSAT-1, is an Earth observation satellite with a high-resolution optical camera designed to monitor for natural disasters along the Korean Peninsula by pairing its images with artificial intelligence. 

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-18-at-6.52.32-PM.png

NEONSAT-1 is the first satellite developed under the NEONSAT program by SaTReC and KAIST, Korea’s leading university in science and technology, which developed and operated Korea’s very first satellite KITSAT-1 more than 30 years ago. Other NEONSAT satellites are planned to be launched in 2026 and 2027 to build out the NEONSAT constellation. 

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-18-at-7.04.14-PM.png

The secondary payload is NASA’s ACS3, a technology demonstration of new materials and deployable structures for solar sail propulsion systems that use sunlight to propel the spacecraft. Much like a sailboat is powered by wind pushing against a sail, solar sails employ the pressure of sunlight for propulsion, eliminating the need for conventional rocket propellant.

The mission plans to test the deployment of new composite booms that will unfurl the solar sail to measure approximately 30 feet per side, or about the size of a small apartment in total. Flight data obtained during the demonstration will be used for designing future larger-scale composite solar sail systems for space weather early warning satellites, asteroid and other small body reconnaissance missions, and missions to observe the polar regions of the sun.

This image has an empty alt attribute; its file name is Screen-Shot-2024-04-18-at-7.04.23-PM.png

NASA’s Advanced Composite Solar Sail System (ACS3) is a technology demonstration mission tasked with deploying a composite boom solar sail.

NeonSat-1 is a high-resolution optical satellite by South Korea’s KAIST that will be deployed as a technology demonstration for a planned future Earth observation constellation.

Filed Under: , an Earth Observation (EO) satellite for the Satellite Technology Research Center (SaTReC), AI, Artificial Intelligence (AI), Asteroids, Disaster Management, Earth Observation (EO), Electron, In-Space Propulsion, Korea Advanced Institute of Science and Technology (KAIST), NASA, NeonSat-1 (KAIST), Polar Region, Propulsion, Rocket Lab, Rocket Lab Launch Complex 1, Satellite Data, Solar Sail, South Korea, Space Weather, Spacecraft, Sun Tagged With: Featured

Primary Sidebar

Most Read Stories

  • In Their Honor ... Lest We Forget
  • Russian satellite tumbling out of control
  • INNOSPACE signs strategic MoU with Saturn Satellite Networks to develop + launch smallsats
  • ULA's Atlas 5 is ready but is the weather at the Cape ready for Amazon's Project Kuiper launch?
  • Rocket Lab partners with U.S.A.F. | AFRL for Neutron launch for rocket cargo missions

About Satnews

  • Contacts
  • History

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!