• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Europe Insights
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

NASA flies drones autonomously for air taxi research

January 4, 2024

Researchers at NASA’s Langley Research Center in Hampton, Virginia, recently flew multiple drones beyond line of sight (BLOS) with no visual observer. The drones successfully flew around obstacles and each other during takeoff, along a planned route, and upon landing, all autonomously without a pilot controlling the flight.

A small, black drone with multiple helicopter-like blades hovers over some trees during a bright, partly cloudy day in Virginia.
An Alta-8 small Unmanned Aircraft System testbed vehicle flies above NASA’s Langley Research Center in Hampton, Virginia. Flying beyond visual line of sight from observers on the ground required special approval from the Federal Aviation Administration and NASA.

“Flying the vehicles beyond visual line of sight, where neither the vehicle nor the airspace is monitored using direct human observation, demonstrates years of research into automation and safety systems, and required specific approval from the Federal Aviation Administration and NASA to complete,” said Lou Glaab, branch head for the aeronautics systems engineering branch at NASA Langley.

It is safer and more cost effective to test self-flying technology meant for larger, passenger carrying air taxis on smaller drones to observe how they avoid each other and other obstacles.

NASA also is testing elements of automation technology using helicopters. These stand-in aircraft help NASA mature the autonomy well before self-flying air taxis are integrated into the skies.

“When you have multiple vehicles, all coming and going from a vertiport that is located adjacent to an airport or deep within a community, we have to ensure the automation technologies of these vehicles are capable of safely handling a high volume of air traffic in a busy area,” said Glaab.

Building upon past tests, the team successfully performed multiple flights using purchased ALTA 8 Uncrewed Aircraft Systems, also known as drones, with no visual observer and flew the drones beyond visual line of sight, referred to as “NOVO-BVLOS” flights.

The software loaded onto the small drones performed airspace communications, flight path management, avoidance with other vehicles, and more skills needed to operate in a busy airspace. This is imperative for what is envisioned with Advanced Air Mobility (AAM), where drones and air taxis will be operating at the same time on a routine basis.

The flight tests were observed from NASA Langley’s Remote Operations for Autonomous Missions control center while the drones took off and landed at the City Environment Range Testing for Autonomous Integrated Navigation test range.

A room full of computer screens on tables and a far wall are watched by researchers monitoring the flight of small drones.
NASA researchers monitor the flight of an autonomous vehicle from the Remote Operations for Autonomous Missions UAS Operations Center at NASA’s Langley Research Center in Hampton, Virginia. The center facilitates “beyond visual line of sight” flight operations of small uncrewed aircraft system vehicles, also known as drones. Photo is courtesy of NASA / David Bowman.

NASA will transfer the new technology created during this project to the public to ensure industry manufacturers can access the software while designing their vehicles.

“NASA’s ability to transfer these technologies will significantly benefit the industry,” said Jake Schaefer, flight operations lead for the project. “By conducting flight tests within the national airspace, in close proximity to airports and an urban environment, we are table to test technologies and procedures in a controlled but relevant environment for future AAM vehicles.”

One of these technologies was ICAROUS, which stands for NASA’s Integrated Configurable Architecture for Reliable Operations of Unmanned Systems. This software provides an autonomous detect-and-avoid function and is part of the overall system to maintain “well clear” from other air traffic.

Another technology used was NASA’s Safe2Ditch system, which allows the vehicle to observe the ground below and make an autonomous decision on the safest place to land in the event of an in-flight emergency.

NASA’s AAM mission has multiple projects contributing to various research areas. This project, called the High Density Vertiplex, was specifically focused on testing and evaluating where these future vehicles will take off and land at high frequency, called vertiports, or vertiplexes, for multiple vertiports near each other, and the technology advancements needed to make this successful.

Filed Under: Agencies, Autonomous Flight, Drones, Langley Research Center (NASA), NASA, News

Primary Sidebar

Most Read Stories

  • In celebration of Juneteenth
  • Wishing Everyone a Happy July 4th … Independence Day, U.S.A.
  • Eutelsat's efforts to obtain funding to save OneWeb
  • Forrester's Digest: Starlink active in Iran
  • Startical launches the firm's 2nd demo satellite — IOD-2

About Satnews

  • Contacts
  • History

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!