• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

The Development Trends of Massive MIMO (mMIMO)

December 12, 2022

The following document has just been released from IDTechEx, Cambridge, UK

IDTechEx offer bespoke subscription packages with direct access to expert analysts and an extensive knowledge base, providing the critical intelligence and independent analysis needed to reach goals.

5G has two new frequency bands: sub-6 GHz (3.5 – 7 GHz) and mmWave (24 – 100 GHz). 5G sub-6 GHz, with a frequency relatively close to the 4G frequency range, is a popular choice because it finds a balance between providing excellent data throughput and being reasonably priced. According to IDTechEx’s “5G Market 2023-2033: Technology, Trends, Forecasts, Players” report, 53% of 5G commercial/pre-commercial services as of 2022 are based on sub-6 GHz, with mmWave accounting only for less than 10% of the market. 

Despite the growing market of 5G, the fact that both 5G sub-6 GHz and mmWave bands have higher frequencies than the previous 4G makes the signal travel distance shorter, with mmWave suffering the most. Hence, new technological improvements are essential to allow 5G deployment to be deployed more cost-effectively. 

Massive Multiple Input, Multiple Output (MIMO) technology has been developed and widely adopted in the 5G era. Massive MIMO technology is important because radio devices with such technology can have 32 or 64 TRX channels, with up to 512 or even more antenna elements, resulting in much better capacity gain than traditional equipment with only two, four, or at most eight TRX channels.

Massive MIMO’s most essential characteristic is to improve coverage on new and higher 5G frequency bands through beamforming, allowing for the same coverage on 5G bands as on 4G utilizing the old site grid. In addition to this, other benefits of massive MIMO bring along include:

  • Allow users connected to the same base station to share time and frequency resources, which greatly increases network capacity without the need for more dense base stations or a wider bandwidth.
  • Provide more possible signal paths and better performance in terms of data rate and link reliability
  • Utilize beamforming technology, increasing spectrum efficiency
  • Massive MIMO provides far greater vertical flexibility compared to traditional MIMO
  • Reduce Total-cost-of-ownership (TCO) per capacity in high traffic load scenario

In summary, massive MIMO technology is the key in 5G to increase capacity, enhance network coverage, and thus improve user experience.

According to Ericsson’s statement on their 5G sub-6 GHz deployment in China, the ratio of mMIMO radios in the areas they covered was approximately 80% Massive MIMO vs. 20% conventional RRU (remote radio unit) solutions for the 5G sub-6 GHz spectrum at 3.5 GHz. Though the ratio varies based on the deployment environment, it is higher in dense metropolitan areas and lower in suburban areas. For a given deployment scenario, the ratio of Massive MIMO to RRU is predicted to grow with time.

Despite being on the market for 2-3 years, large MIMO radios are still under continuous development since there are still some obstacles ahead. Key development trends of massive MIMO radios include (1) Weight and size reduction, (2) Power consumption reduction, (3) Effective isotropic radiated power (EIRP) improvement, and (4) Thermal management.

Si technology is one of the key components to continuously shrink massive MIMO radio size and weight and reduce power consumption. In telecom systems, 95% of the functionality on a radio base station receiver board is signal processing, which relies on one or several powerful Si pieces to execute. Hence, having a well-designed Si is critical for building lightweight, more power-efficient massive MIMO base stations. The “5G Market 2023-2033: Technology, Trends, Forecasts, Players” research from IDTechEx has a more in-depth discussion on power consumption management made possible by Si innovations from various companies. The selection of semiconductors for power amplifiers is another important factor essential to massive MIMO. It is estimated that the PA consumes more than 60% of the radio’s electricity. As a result, having a high-efficiency power amplifier is crucial, and the current development trend for achieving the goals includes (1) integrating more discrete steps into a single package and (2) adopting new technology such as high-efficiency GaN. Last but not least, software development is as important to hardware advancement. Implement suitable software and/or use AI/ML in the system, for example, to optimize energy usage throughout the whole network infrastructure.

For further understanding of the 5G massive MIMO development and overall 5G markets, players, technologies, opportunities, and challenges, please refer to the IDTechEx report “5G Market 2023-2033: Technology, Trends, Forecasts, Players“. In addition, IDTechEx has also authorized several market research reports that cover critical 5G technologies in-depth, including “5G Small Cells 2021-2031: Technologies, Markets, Forecast“, “Low-loss Materials for 5G and 6G 2023-2033“, and “Thermal Management for 5G 2022-2032“. 

For more information on the IDTechEx 5G portfolio, including downloadable sample pages, please visit www.IDTechEx.com/Research/5G. 

Filed Under: 4G, 5G, 5G over Satellite, Analysis / Reports, Base Station, Beamforming, China, Comms, Forecasting, Frequency Spectrum, MIMO, Network, Technology, Thermal Management, United Kingdom (UK)

Primary Sidebar

Most Read Stories

  • ULA's Amazon Project Kuiper now set for April 28 launch
  • ULA plans Amazon Project Kuiper's launch on Monday
  • Rocket Lab confirms D2C ambitions
  • Russian satellite tumbling out of control
  • Vast announces 3 additional payload partners for Haven-1 Lab + signs leverage agreement with ISS National Laboratory

About Satnews

  • Contacts
  • History

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!