• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

DARPA’s SPCE program to push beyond power limitations in space

October 11, 2022

Rapidly proliferating smallsats in LEO are expanding space-based capabilities critical to both government and industry. As the subsequent, ever-increasing demand strains operational limitations of LEO satellites, DARPA’s new Space Power Conversion Electronics (SPCE) program seeks greater efficiencies in usable power in the harsh space environment.

Space-based power consumption generates heat that can only be offloaded through radiation. This type of thermal management constrains the maximum operating power a satellite can consume. Usable power is further reduced by the inefficiencies in point-of-load (POL) converters.

The main function of POL converters is to deliver power at significantly lower voltage than the high-voltage main satellite power bus for payloads. These lower-voltage applications include onboard microsystems that execute computing and other electronic functions.

Today’s space POL converters comprise radiation-hardened, high-voltage switching transistors and radiation-resistant passive and active circuit elements to survive in challenging space conditions. These components, subject to extensive development and testing processes to withstand radiation damage, trail the performance of their counterparts built for non-radiated applications, such as ground-based systems. The latter can leverage faster, more cutting-edge components, but the radiation-hardening process reduces POL power efficiency in space to as little as 60% – severely limiting a satellite’s capabilities and battery lifetime.

Improved power efficiency in the harsh, radiated space environment is necessary to meet demands for new, increasingly advanced mission capabilities as well as extended lifetimes for persistent LEO constellations.

The goal of DARPA’s SPCE program is to boost the performance of space-based POL systems through development of high-voltage, radiation-tolerant transistors and integrated circuit technologies that are low-loss, high-voltage, and radiation tolerant.

The SPCE program consists of three program phases. The 20-month first phase will target radiation-tolerant, high-performance, high-voltage transistors development, while Phase 2 focuses on low-loss integration development and Phase 3 targets high-efficiency conversion circuit demonstration.

“SPCE will exploit a combination of materials and device-engineering, integrating advanced materials of different types and composition – or heterogenous material synthesis – and novel device designs. This will help achieve radiation-tolerant power transistors for space that offer performance that is competitive with terrestrial, state-of-the-art wide bandgap semiconductor power transistors,” said Jason Woo, DARPA program manager for SPCE. “With proliferation in LEO, 60% efficiency is no longer good enough.”

According to Woo, if successful, SPCE breakthroughs could extend system lifetimes and create new mission capabilities for persistent LEO constellations operating in difficult space terrains.

More information can be found in the Broad Agency Announcement via this direct link…

Filed Under: Constellations, LEO, Radiation Tolerant, SmallSat, Space Power Conversion Electronics (SPCE), Thermal Management

Primary Sidebar

Most Read Stories

  • In Their Honor ... Lest We Forget
  • Russian satellite tumbling out of control
  • INNOSPACE signs strategic MoU with Saturn Satellite Networks to develop + launch smallsats
  • Rocket Lab partners with U.S.A.F. | AFRL for Neutron launch for rocket cargo missions
  • AST SpaceMobile to launch 243 satellites

About Satnews

  • Contacts
  • History

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!