• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Astrobotic’s Peregrine lunar lander completes JPL Deep Space Network ground testing successfully

August 16, 2022

Last month, the Deep Space Network (DSN) from NASA’s Jet Propulsion Laboratory (JPL) successfully completed end-to-end test communications with Astrobotic’s Peregrine lunar lander. These tests demonstrated compatibility with space-to-ground communications that will occur during Peregrine’s mission to the Moon.

After the Peregrine spacecraft separates from United Launch Alliance (ULA)’s Vulcan Centaur rocket, Peregrine will be using DSN’s 34-meter dishes at Canberra, Australia; Madrid, Spain; and Goldstone, California. These dishes are the same suite used to communicate with the James Webb Telescope, as well as historic missions such as New Horizons, Solar Parker Probe, InSight, Juno, and MAVEN.

The Peregrine lander.

”Our team has completed a major test with the DSN global network and Astrobotic’s communication systems, including flight avionics, ground support software, and mission ops infrastructure. We successfully passed commands, received telemetry, and determined ranging performance. The sense of accomplishment was palpable when the screens of our Mission Control center were illuminated by real telemetry coming from our spacecraft,” said Eduardo Lugo, Astrobotic Lead RF Engineer.

Testing with Peregrine and DSN was conducted over two weeks, culminating in confirmation that Peregrine can successfully transmit data and receive commands through DSN and to Astrobotic’s Mission Control Center in Pittsburgh, Pennsylvania.

Astrobotic’s Peregrine during build.

“This success marks a major program milestone for Peregrine mission as well as for Astrobotic as a company. Confirming the technical capabilities of our team and our custom-built avionics and communications systems in a sophisticated, system-level spacecraft test was a tremendous success. Seeing the entire team overcome test challenges felt close to flying the actual mission. This is a great accomplishment for our historic trip to the Moon,” said Ander Solorzano, Astrobotic’s Lead Systems Engineer and one of the Flight Directors for Peregrine Mission One.

Peregrine’s progress continues as its Space Robotics team also successfully integrated the OPAL Terrain Relative Navigation (TRN) compute hardware and associated camera to Peregrine’s flight decks. TRN is designed to enable precise and safe landings on the Moon, Mars, and beyond. The system will be leveraged again on Astrobotic’s Griffin Mission One. In addition to TRN, all 24 of Peregrine’s payloads have also been integrated with its flight decks.

The Peregrine spacecraft continues its final assembly at Astrobotic’s headquarters and is currently on schedule for final environmental testing before delivery to the launch site in Cape Canaveral, Florida.

Filed Under: Agencies, Astrobotic, Comms, Flight Avionics, Lunar, Lunar Lander, NASA / JPL, Space-to-Ground

Primary Sidebar

Most Read Stories

  • ULA's Amazon Project Kuiper now set for April 28 launch
  • ULA plans Amazon Project Kuiper's launch on Monday
  • Rocket Lab confirms D2C ambitions
  • Russian satellite tumbling out of control
  • Vast announces 3 additional payload partners for Haven-1 Lab + signs leverage agreement with ISS National Laboratory

About Satnews

  • Contacts
  • History

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!