• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

TriSept satellite security solution experimental mission payloads to be launched by RocketStar

August 9, 2022

TriSept Corporation has completed the integration of two experimental mission payloads running the company’s new TSEL satellite security operating software for a suborbital test flight aboard RocketStar’s launch vehicle that is set to liftoff from the Koehn Lake Bed in the Mojave Desert.

TriSept has teamed with RocketStar and its 40-foot-tall, aerospike-powered Cowbell rocket to further lower barriers to space for commercial, government and experimental missions, such as the payloads the University of Central Florida and Brigham Young University will launch and study in September.

“This is the first in a series of suborbital flights aboard our RocketStar Cowbell launch vehicle, with each mission powered by the Aerospike engine designed to achieve more altitude and flight data as we build toward our first orbital insertion mission on our larger launch vehicle in 2023,” said Chris Craddock, RocketStar CEO. “RocketStar is thrilled to partner with the experienced TriSept launch and integration team, as we roll in our portable launch facility and throw open the door even wider to affordable and reliable smallsat access to space.”

A small team of UCF students will be closely studying their payload mission, which will simulate asteroid particle activity in space during the 13 minute flight. They will examine a collection of colliding particles inside a device they’ve named the entrapulator, after a similar payload the university has flown on the International Space Station and other vehicles.

The UCF mission aims to shed more light on collisions in the protoplanetary nebula and the evolution of loose materials or regolith on the surface of asteroids during such an impact. Brigham Young University’s College of Engineering students have designed a sensor package dubbed Motron II that will measure motion, acceleration and vibration aboard the launch vehicle and help mission operators better understand and design for launches of small payloads.

In addition to the rich scientific and technical data both university teams expect to harvest from their missions, they are also excited to explore the valuable findings from the first suborbital tests of TriSept’s new satellite security operating system.

“This experiment is providing a new batch of students the chance to interface and gain invaluable real-world experience with seasoned engineers in the space industry,” said Dr. David Long, an Engineering Professor with the BYU Center for Remote Sensing. “We are excited to work with TriSept and RocketStar to put our flight motion payload to the test and to work with flight-grade security software on its maiden voyage in space.”

“Our students are always thrilled to launch a mission into space. TriSept opened the door to this great opportunity for our students to participate in the integration and launch of our payload aboard the RocketStar rocket,” said Josh Colwell, a UCF Physics Professor whose students at the Stephen W. Hawking Center for Microgravity Research and Education have developed the mission studying asteroids. “We are also incredibly excited to be among the first involved in the milestone tests of new satellite security software that could help pave the way to a new level of protected missions in space.”

“TriSept is passionate about opening up safe space access to everyone, including students who often can only dream about getting their experimental missions aboard a rocket and launched into space,” said Jason Armstrong, TriSept’s Director of Launch and Integration Services. “Our focus will be on supporting two experimental missions and the inaugural flight of our new TSEL satellite security operating system running on both university payload missions. It’s another step toward securing small satellite operations with a new protection solution that is now commercially available.”

The TriSept Secure Embedded Layer (TSEL) operating system, capable of detecting, tracking and eliminating known and emerging vulnerabilities on conventional and small satellites, will undergo a series of environmental and operational tests during the thirteen-minute mission to the edge of space.

“This is an exciting collaborative and multi-faceted mission for two innovative companies determined to transform space access, making it simpler and more affordable for small sat missions looking for both shared and dedicated rides into orbit,” said Rob Spicer, TriSept Founder and CEO. “It’s a historic launch of firsts – the inaugural RocketStar launch vehicle carrying a pair of experimental missions and TriSept’s TSEL operating system is on the verge of making satellite missions and the company’s depending on them more secure from this day forward.”

TriSept’s TSEL was developed to meet rising demand across the satellite industry for a managed cybersecurity solution that secures an embedded device much like a terrestrial server is protected. TSEL offers a series of automated mechanisms and updates that deliver far more detailed audit data, near-real-time security analysis and patch updates along with “zero trust” verification layers that protect against hackers and provide an accurate account of what’s happening aboard the satellite at all times.

A rising number of attacks on critical infrastructure across the U.S. and the world have shown just how vulnerable spacecraft can be, especially as the vast majority of small satellites launched into orbit are ill prepared to protect themselves in the event of adversarial threats.

Filed Under: Launch, Launch Vehicle, RocketStar, SmallSat, Suborbital, Test Flight, TriSept

Primary Sidebar

Most Read Stories

  • In Their Honor ... Lest We Forget
  • Space Debris, and the EU’s Space Act
  • In celebration of Juneteenth
  • AST SpaceMobile to launch 243 satellites
  • Rocket Lab partners with U.S.A.F. | AFRL for Neutron launch for rocket cargo missions

About Satnews

  • Contacts
  • History

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!