• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium
  • SmallSat Europe

SatNews

  • LATEST
  • EXPLORE ⌄
    • Missions & Constellations
    • Business & Finance
    • Military & Defense
    • Launch
    • Software Automation & Ground Systems
    • Government & Regulation
    • Services & Applications
  • Magazines
  • Events
  • Calendar ⌄
    • IN PERSON
    • VIRTUAL
  • Subscribe

NASA’s Advanced Composite Solar Sail System To Be Deployed Via A Rocket Lab Electron Launch Vehicle

October 6, 2021

Rocket Lab USA, Inc. (Nasdaq: RKLB) has been selected to launch NASA’s Advanced Composite Solar Sail System, or ACS3, on thir Electron launch vehicle.

NASA’s ACS3 technology demonstration uses composite materials – or a combination of materials with different properties, in its novel, lightweight booms that deploy from a cubesat to support a solar sail. Just as a sailboat is powered by wind in a sail, solar sails employ the pressure of sunlight for propulsion, eliminating the need for conventional rocket propellant.

Data obtained from the ACS3 demonstration will guide the design of future larger-scale composite solar sail systems that could be used for space weather early warning satellites, near-Earth asteroid reconnaissance missions, or communications relays for crewed exploration missions.

ACS3 will launch as part of a rideshare mission, scheduled for lift-off from Rocket Lab Launch Complex 1 in mid-2022. The ability of the Electron launch vehicle’s Kick Stage to deploy individual satellites to unique orbits, even when flying as part of a rideshare, was a key factor in Rocket Lab being selected as the launch provider.

Rocket Lab’s Launch Complex 1. Photo is courtesy of the company.

ACS3 requires a higher altitude than the other rideshare payloads launching on the same mission, so after deploying the first payloads, the Kick Stage will perform another burn with its 3D printed Curie engine to raise the orbit and deploy ACS3. Rocket Lab’s Kick Stage has demonstrated orbit raises across 18 missions to date, and also successfully conducted inclination changes and orbit lowering, providing customers with proven, flexible, and precise in-space transportation.

“We are thrilled to be NASA’s launch partner for this innovative mission,” said Rocket Lab founder and Chief Executive, Peter Beck. “It seems fitting to launch NASA’s Advanced Composite Solar Sail System on Electron, the world’s first full carbon composite orbital launch vehicle. We’re excited to see composites used yet again to unlock new capabilities in space.”

ACS3 Mission Partners:

NASA’s Langley Research Center in Hampton, Virginia, is designing ACS3’s deployable composite booms and solar sail system. NanoAvionics of Columbia, Illinois, is designing and building the 12U cubesat for the ACS3 technology demonstration. NASA’s Ames Research Center in California’s Silicon Valley is managing the ACS3 project and will oversee final integration of the solar sail payload and cubesat. The Santa Clara University’s Robotics Systems Lab in Santa Clara, California, will provide cubesat operations support for the ACS3 technology demonstration. NASA’s Small Spacecraft Technology program within the agency’s Space Technology Mission Directorate is sponsoring the ACS3 project and is providing the funding for the launch . NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate is developing ACS3’s deployable composite boom technology.

An illustration of a completely unfurled solar sail measuring approximately 9 meters (about 30 feet) per side. As solar radiation pressure is small, the solar sail must be large in size to efficiently generate thrust. Image is courtesy of NASA.

Filed Under: Exploration & Science Missions, Government & Regulation Tagged With: Featured

Primary Sidebar

Coverage

  • Missions & Constellations
  • Business & Finance
  • Military & Defense
  • Launch
  • Software Automation & Ground Systems
  • Government & Regulation
  • Services & Applications

Most Read Stories

  • Proximus Global + Starlink to expand Direct-to-Cell satellite connectivity in Europe
  • Rohde & Schwarz acquires stake in Orbint GmbH for signal intelligence + reconnaissance from space
  • Congress desires LEO, but threats are real
  • AST SpaceMobile's BlueBird 6 to take flight in December
  • USSF Awards Initial 'Golden Dome' Prototype Contracts, Signaling Strategic Shift to Space-Based Defense

About Satnews

  • Contacts
  • History

Archives

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!