• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Space Dynamics Lab Involved In Historic Asteroid Debris Retrieval

October 22, 2020

On a clear fall evening in September 2016, NASA launched a spacecraft to a distant asteroid to help answer questions central to the human experience: Where did we come from, and what is our destiny? With aid from the Space Dynamics Laboratory at Utah State University, the agency is one step closer to answering those questions.

Under the leadership of the University of Arizona’s Lunar and Planetary Laboratory, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer spacecraft (OSIRIS-REx) extended its articulated robotic arm on October 21 at approximately 6:12 pm EDT to collect debris, called regolith, from the surface of asteroid Bennu.

SDL built the camera electronics for a three-camera suite onboard OSIRIS-REx named OCAMS.

The onboard cameras SDL helped to build are known as PolyCam, MapCam, and SamCam. PolyCam enabled NASA to acquire images of Bennu from approximately 1.2 million miles away and assisted with the spacecraft’s navigation to the asteroid during approach.

OCAMS detector assemblies. Photos courtesy of Space Dynamics Laboratory.

MapCam was responsible for searching the asteroid for a suitable place to collect the sample. MapCam also mapped Bennu and searched for outgassing plumes and other debris ejected from the asteroid.

SamCam is a close-range camera that verified the sample acquisition and will image the sampling mechanism.

The Touch-And-Go Sample Acquisition Mechanism, TAGSAM, is the arm on the spacecraft responsible for collecting Bennu’s regolith sample and includes a round sampler head at the end. During the touch-and-go maneuver, the sampler head was extended toward Bennu.

The momentum of the spacecraft’s slow, downward trajectory pushed the sampler head against the asteroid’s surface for about ten seconds—just long enough to obtain a sample. At contact, the spacecraft fired nitrogen gas onto the surface to roil up dust and small pebbles, which were then captured.

Artistic rendition of OSIRIS-REx in space. Image is courtesy of NASA/GSFC/UA.

OSIRIS-REx fired its thruster to back away from Bennu’s surface, and now the mission team will measure the sample amount by spinning the spacecraft with the collection arm extended. The team will compare the change in the spacecraft’s inertia with a previous, empty TAGSAM spin to ensure that enough sample was collected. The TAGSAM head will then be placed in the Sample Return Capsule for return to Earth. After successful stowage, the spacecraft will slowly drift away from Bennu to a safe distance, where it will stay until its departure in 2021 for the Return Cruise Phase back to Earth.

This view of asteroid Bennu ejecting particles from its surface on January 19, 2019 was created by combining two images taken on board OSIRIS-REx spacecraft. Other image processing techniques were also applied, such as cropping and adjusting the brightness and contrast of each image. Image is courtesy of NASA/Goddard/University of Arizona/Lockheed Martin.

Why Bennu?

Currently about 207 million miles away from Earth, asteroid Bennu is a carbon-based asteroid whose regolith may contain evidence of our solar system’s primeval history. Contained within its regolith could be clues that Bennu may also have molecular precursors to the origin of life and Earth’s oceans, scientists believe.

With a polar diameter of approximately 510 meters—the Empire State Building is 443 meters tall—Bennu is also one of the most potentially hazardous asteroids and has a relatively high probability of impacting Earth late in the 22nd century. OSIRIS-REx will determine Bennu’s physical and chemical properties, which will be critical knowledge in the event of an impact mitigation mission.

According to NASA, asteroids such as Bennu contain natural resources such as water, organics, and precious metals. In the future, these asteroids may fuel solar system exploration by robotic and crewed spacecraft.

The OSIRIS-REx Sample Return Capsule will land in Utah’s West Desert in 2023. SDL has been solving the technical challenges faced by the military, science community, and industry for six decades and supports NASA’s mission to drive advances in science, technology, aeronautics, and space exploration to enhance knowledge, education, innovation, economic vitality and stewardship of Earth. As one of 14 University Affiliated Research Centers, SDL serves as a subject matter expert in its core research areas to the U.S. Government, ensuring that essential engineering and technology capabilities are maintained. SDL is a research laboratory headquartered in North Logan, Utah, and has offices in Albuquerque, New Mexico; Bedford, Massachusetts; Colorado Springs, Colorado; Dayton, Ohio; Huntsville, Alabama; Houston, Texas; Los Angeles, California; Stafford, Virginia; and Washington, DC. For more information, visit www.sdl.usu.edu.

Executive Comment

Alan Thurgood

“It is incredibly exciting to be involved with missions like OSIRIS-REx,” said Alan Thurgood, SDL’s Civil and Commercial Space division director. “Being a part of exciting science with historically significant missions and pushing human knowledge forward motivates our team at SDL to do great work.”

Jed Hancock

“The successful collection of regolith from Bennu perfectly illustrates the ingenuity of the dedicated men and women from America’s storied space program, who routinely collaborate in order to provide valuable science,” said Jed Hancock, SDL’s Executive Director of programs and operations. “SDL is honored to be a part of this historic mission that builds upon our decades-long partnership with NASA and helps the agency achieve its vision to ‘reach for new heights and reveal the unknown for the benefit of humankind.’”

An illustration of what the OSIRIS-REx TAGSAM maneuver might look like as the spacecraft descends down to Bennu to collect a sample. Image is courtesy of NASA/GODDARD/UNIVERSITY OF ARIZONA.

Filed Under: Agencies, Satellites, Space

Primary Sidebar

Most Read Stories

  • ULA's Amazon Project Kuiper now set for April 28 launch
  • ULA plans Amazon Project Kuiper's launch on Monday
  • Rocket Lab confirms D2C ambitions
  • Russian satellite tumbling out of control
  • Vast announces 3 additional payload partners for Haven-1 Lab + signs leverage agreement with ISS National Laboratory

About Satnews

  • Contacts
  • History

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!