• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Europe Insights
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Astrobotic’s CubeRover En Route To Kennedy Space Center

October 1, 2020

Model of Astrobotic’s CubeRover.

After three years of intensive engineering work, Astrobotic’s CubeRover is on its way to NASA’s Kennedy Space Center in Florida.

The CubeRover is designed to provide an affordable mobile outlet for scientific instruments and other payloads to operate on the surface of the Moon. This occasion marks the first time Astrobotic’s Planetary Mobility department has delivered rover hardware to an outside entity.

Named for its modular, scalable design, the CubeRover was co-developed with Carnegie Mellon University, with input from a NASA team at Kennedy, and marks the completion of work on NASA’s $750,000 Small Business Innovation Research (SBIR) Phase 2 contract to develop a lightweight rover with flight characteristics.

Astrobotic has since refined and commercialized the CubeRover product line with the goal of supporting mobility as a service with a variety of diverse payloads, making lunar access easier for smaller tech demonstrations and scientific investigations. The rover is also designed to be integrated onto multiple lunar landers for voyages to the Moon, facilitating its inclusion on a wide variety of future space missions.

Astrobotic’s 2U CubeRover navigates ground testing before being sent to
Kennedy Space Center.

Designing the compact CubeRover presented an array of engineering challenges for the Astrobotic and Carnegie Mellon teams. Among many concerns, the teams were tasked with regulating the rover’s temperature in extreme climate fluctuations, keeping its mass minimal, and ensuring the rover maintained optimum mobility for instruments operating on the rover.

The teams created a robust thermal design able to endure temperatures ranging from space (-455ºF) to the lunar surface (260ºF). The result is the lightest commercial planetary rover ever created. The CubeRover was also outfitted with a calibrated camera used to orient itself relative to known objects on the lunar surface, such as Astrobotic’s Peregrine lander.

The ability for the rover’s operation team to recognize its position on the Moon augments the value of the data, allowing payload customers to make informed decisions about where to travel next.

Astrobotic’s work on CubeRover will continue through its $2M Tipping Point contract with NASA, concluding in February 2022. This program funds the flight qualification of the 2U CubeRover product line, and also outfits the rover with a set of advanced features including a lighter all-wheel-drive system, a solar array for recharging, adaptive image compression, and additional interfaces to support a wider variety of landers and payloads.

Mike Provenzano, Astrobotic’s Director of Planetary Mobility,
poses with CubeRover.

Executive Comment

“Because our CubeRover is so light — in the four kilogram range — it dramatically reduces flight cost, making the Moon more accessible to more customers,“ said Mike Provenzano, Astrobotic’s Director of Planetary Mobility. “We’re also including industry standard interfaces throughout the rover to simplify the payload integration process.”

Filed Under: Agencies, Space

Primary Sidebar

Most Read Stories

  • In celebration of Juneteenth
  • Wishing Everyone a Happy July 4th … Independence Day, U.S.A.
  • Eutelsat's efforts to obtain funding to save OneWeb
  • Forrester's Digest: Starlink active in Iran
  • SpaceX's launch on Friday of Starlink Group 10-34 smallsats may have weather issues

About Satnews

  • Contacts
  • History

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!