• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Europe Insights
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

The Big Picture, As Seen By Space Dynamics Laboratory’s HARP

August 3, 2020

A focus for the Space Dynamics Laboratory during the SmallSat Conference is a small satellite built by the company that is providing scientists unprecedented images for a spacecraft of its size.

Space Dynamics Laboratory’s HARP smallsat.

Measuring only 10 centimeters wide, 10 centimeters high and 30 centimeters long, the smallsat was designed, manufactured, integrated, and tested by SDL and carries the Hyper-Angular Rainbow Polarimeter payload built by the Earth and Space Institute at the University of Maryland, Baltimore County.

The program is funded by NASA and is under the direction of principal investigator Dr. J. Vanderlei Martins. HARP is designed to measure the microphysical properties of cloud and aerosol particles in Earth’s atmosphere.

HARP was launched on November 2, 2019, from a Northrop Grumman Antares rocket in its Cygnus cargo spacecraft. Following a three-month stay on the International Space Station, HARP was deployed into orbit on February 19, 2020.

SDL also manages mission operations for HARP’s flight while UMBC manages the science operations.

A HARP image capture of Lake Titicaca (on the border of Peru and Bolivia), courtesy of Space Dynamics Laboratory.

Cloud and aerosol processes influence climate change, which affects our oceans, weather, ecosystems, and society at large. The largest impediments to estimating climate change are a lack of quantitative information about aerosol forcing, insufficient understanding of aerosol-cloud processes, and cloud feedbacks in the climate system. New observations and a better understanding of aerosol-cloud processes will help to narrow climate change estimate uncertainties.

HARP, an imaging polarimeter with hyper-angular capability, can make a strong contribution to characterizing ice and water cloud properties. Polarization and an increased number of observation angles provides a much clearer picture of cloud droplet distribution, adding the width of the droplet distribution to the currently measured effective radius.

A smallsat under test in the Helmholtz cage Attitude Determination & Control System (ADCS) test station at Space Dynamics Laboratory.

Executive Comment

“Dr. Martins and his team from UMBC are providing NASA with incredibly specialized images from low earth orbit of our atmosphere, further validating that Earth science from space can be achieved with small satellites,” said Tim Neilsen, SDL program manager for HARP. “The application of space-based Earth observation technology has historically been the domain of large satellites. HARP helps to confirm that miniaturized sensors on small satellites can provide a high degree of fidelity at a fraction of the cost and time it takes to build larger satellites.”

“HARP is the first ever instrument in space to perform moderate spatial resolution measurements of the cloud droplet size distribution using a hyperangular polarization capability. HARP is also a precursor for future image polarimeters to perform global measurements of aerosol and cloud properties, including the HARP2 instrument that is currently being built at UMBC to fly in the NASA PACE mission,” said Dr. Martins.

The Space Dynamics Laboratory’s (SDL) Pearl satellite platform.

Filed Under: SmallSat

Primary Sidebar

Most Read Stories

  • In celebration of Juneteenth
  • Wishing Everyone a Happy July 4th … Independence Day, U.S.A.
  • Eutelsat's efforts to obtain funding to save OneWeb
  • Forrester's Digest: Starlink active in Iran
  • Startical launches the firm's 2nd demo satellite — IOD-2

About Satnews

  • Contacts
  • History

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!