• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Europe Insights
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Lockheed Martin’s LM2100™ Completes Thermal Vacuum Testing

June 22, 2020

SBIRS GEO 5 and 6. Image is courtesy of Lockheed Martin.

The LM2100™ recently, and successfully, came out of almost two months of harsh simulated space environmental testing.

On June 9, the U.S. Space Force’s fifth Space Based Infrared System Geosynchronous Earth Orbit satellite (SBIRS GEO-5) successfully completed Thermal Vacuum (TVAC) testing at Lockheed Martin (NYSE: LMT)’s Sunnyvale, California satellite manufacturing facility.

Completing TVAC was a significant milestone for the first military space satellite to be built on one of Lockheed Martin’s modernized LM 2100™ satellite buses. During TVAC testing, the satellite – with its sophisticated electronics performing full operations – faced waves of heat and cold in a depressurized atmosphere similar to the drastic environmental changes experienced in space.

SBIRS GEO-5 will join the Space Force’s constellation of missile warning satellites equipped, with powerful scanning and staring infrared surveillance sensors, which protect our nation 24-7. These sensors collect data that allow the U.S. military to detect missile launches, support ballistic missile defense, expand technical intelligence gathering and bolster situational awareness on the battlefield.

No “Ordinary” Missile Defense Satellite SBIRS GEO-5 is the first of two new SBIRS missile defense satellites and the fourth satellite built on Lockheed Martin’s new, modernized LM 2100 satellite bus. A major investment by Lockheed Martin, the LM 2100 purposefully focuses on increasing production speed, reducing costs, adding resiliency and building in more mission flexibility. The LM 2100:

Drives efficiency and cost savings into satellite design and production by leveraging common components, processes and production practices across the entire satellite production line. Features 26 improvements that add more power and flexibility to the company’s proven A2100 satellite platform. Increases satellite resiliency, eliminates older components and utilizes modern electronics to add new capability and increase reliability. Offers a configurable payload module that provides more flexibility for military missions, accommodating mass, power, propellant and volume. Allows easy implementation of additional modernized sensor suites and mission payloads thru its modular design.

LM 2100 is currently slated to be the baseline bus of SBIRS GEO-5, and SBIRS GEO-6, expected to be launched in 2021 and 2022 respectively; three next Next Generation Overhead Persistent Infrared System (Next Gen OPIR) Block 0 GEO satellites expecting to launch starting in 2025; and the future GPS III Follow On (GPS IIIF) satellites, which are expected to launch starting in 2026.

Upgraded SBIRS Ground The sophisticated SBIRS ground control system has had significant upgrades. SBIRS receives and processes large amounts of data from the global coverage of the satellites’ powerful sensors and converts this data into actionable reports for defense, intelligence and civil applications.

“The completion of TVAC can be attributed to a tremendous effort from the Air Force, Lockheed Martin, Aerospace Corporation, and supporting contractor teams,” said Tucker White, SBIRS GEO-5 Assembly, Test, and Launch Operations Lead from the Government Program Office. “The teams worked around the clock and finished on schedule to their original projection. This test phase is vital to any space vehicle test regime and takes GEO-5 one step closer to providing enhanced missile detection to our warfighters.”

“In SBIRS GEO-5, and our next satellite GEO-6, we’re introducing game-changing enhancements to address the needs of our nation’s space warfighting force going forward,” said Tom McCormick, VP for Overhead Persistent Infrared (OPIR) Missions at Lockheed Martin Space. “The threat posed by ballistic missile technology continues to spread exponentially around the world. In 2019, SBIRS detected nearly a thousand missile launches globally, which is about a two-fold increase in two years. As we build more military LM 2100 satellites, we gain schedule efficiencies both from suppliers and the ability to enable concurrent bus and payload testing, which shortens the single line manufacturing flow.”

In August 2019, the U.S. Air Force operationally accepted Lockheed Martin’s Block 20 upgrade to the SBIRS ground control system, which improves its overall performance allowing better mission planning and processing for the full constellation, as well as enhanced cyber security defenses.

The upgrade also formally completed SBIRS’ Engineering & Manufacturing Development (EMD) Phase. This let the Air Force transition their focus to SBIRS’ operations and sustainment, as well as further enhanced capabilities that will be offered by the Next Gen OPIR system, and the Future Operational Resilient Ground Evolution (FORGE) ground system.

Lockheed Martin’s fully-assembled SBIRS GEO 5 missile warning satellite moves into the Thermal Vacuum (TVAC) test chamber. Photo is courtesy of the company.

The SBIRS development team is led by the Production Corps, Geosynchronous Earth Orbit Division, at the U.S. Space Force’s Space and Missile Systems Center, Los Angeles Air Force Base, California. Lockheed Martin Space, Sunnyvale, California, is the SBIRS prime contractor, with Northrop Grumman Aerospace Systems, Azusa, California, as the payload integrator.

Filed Under: Satellites

Primary Sidebar

Most Read Stories

  • Space Debris, and the EU’s Space Act
  • In celebration of Juneteenth
  • Wishing Everyone a Happy July 4th … Independence Day, U.S.A.
  • Eutelsat's efforts to obtain funding to save OneWeb
  • Forrester's Digest: Starlink active in Iran

About Satnews

  • Contacts
  • History

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!