• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Europe Insights
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

Cool Idea: UNM-led NASA Project Seeks to Develop Heat-Transfer Solution for Space

May 5, 2020

 

 

A University of New Mexico professor is leading a NASA project that will develop a more efficient method of cooling that relies on electromagnetic fields instead of moving parts and is believed to be well-suited for a zero-gravity environment, such as space.

The proposal, titled “Efficient Microgravity Heat and Mass Transfer with No Moving Parts,” is being funded by the NASA EPSCoR (Established Program to Stimulate Competitive Research) Program Office. The three-year project began May 1.

The principal investigator is Peter Vorobieff, professor of mechanical engineering at UNM. He is working with Paulo Oemig of the New Mexico Space Grant Consortium based at New Mexico State University, who is the designated NASA ESPCoR director on the project.

The new device will allow for a more efficient way of transporting heat in microgravity, Vorobieff said. Unlike a traditional pump used to transport liquid for cooling and heat transfer, this new method does not employ any moving parts — which can wear out and need maintenance — and requires only a modest power supply, so it is potentially superior to current heat-transfer methods in extreme environments like space.

This design will instead use a magnetic field to move liquid around.

“This method has been tested extensively on Earth, and there is strong evidence that it should work even better in microgravity environments,” Vorobieff said.

In Earth’s gravity field, heat and mass transfer in liquids occurs via a process called natural convection, provided a thermal gradient exists, such as the clash of hot and cool air. On Earth, hotter and less dense material rises, and cooler and denser material sinks due to the Earth’s gravitational pull. But in the microgravity environments of space, forced convection is needed to move hotter material away. Without some kind of a device to stir the fluid, heat transfer in microgravity will be much less efficient.

The project is part of the NASA EPSCoR International Space Station Flight Opportunity. The projects that have been selected for funding will be tested on the International Space Station (ISS) on a future mission.

In the experiment in space, the team will test to see if fluid heat transfer can be enhanced in a microgravity environment. In the studies, an enclosed cell will be filled with water and infused with a small amount of magnetic platelets. One part of the cell will be heated, and without any artificial movement of heat, the temperature will rise quickly near the heat source. Then using the new design, the water will be electromagnetically drawn through the cell, keeping the temperature from rising as quickly.

Results of microgravity and ground tests will then be compared. The goal is the determine the most effective magnetic fields to apply to optimize the heat transfer.

“The ISS is the perfect platform to test this new approach in microgravity because we will have the ability to control heat and mass transfer with no moving parts and very low power requirements,” Vorobieff said.

Vorobieff said the project will provide an important first step in implementing this technology in future space systems.

By Kim Delker, UNM

 

Filed Under: News

Primary Sidebar

Most Read Stories

  • Space Debris, and the EU’s Space Act
  • In celebration of Juneteenth
  • Wishing Everyone a Happy July 4th … Independence Day, U.S.A.
  • Eutelsat's efforts to obtain funding to save OneWeb
  • Forrester's Digest: Starlink active in Iran

About Satnews

  • Contacts
  • History

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!