• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • NEWS:
  • SatNews
  • SatMagazine
  • MilSatMagazine
  • SmallSat News
  • |     EVENTS:
  • SmallSat Symposium
  • Satellite Innovation
  • MilSat Symposium

SatNews

  • HOME
  • Magazines
  • Events
  • SmallSat Symposium Updates
  • Industry Calendar
    • IN PERSON
    • VIRTUAL
  • Subscribe

ASSERTing faster delivery of cutting-edge tech to U.S. Troops

July 18, 2023

DARPA ASSERT program seeks warfighter access to disruptive performance in tech

Today, troops around the world can leverage troves of data at their fingertips, including at the tactical edge. That access marks an important step forward for warfighter technology, but to maximize decision-making at speed, these data volumes require granular, high-speed processing at their points of collection. High-performance computing relies heavily on internal microelectronics.

Artist depiction of solar flare imagery. ASSERT aims to more quickly and more reliably harden space-based microelectronics against damage caused by single-event effects, such as solar flares. Image is courtesy of DARPA.

Going forward, breakthrough performance will be driven by 3D heterogeneously integrated (3DHI) technologies that stack separately manufactured components, containing different semiconductors and materials, within a single package.

Critical applications will involve operating in extreme environments such as space, where components are subject to potentially destructive levels of radiation. With their multiple layers of vertically integrated circuits, complex interconnects, and diversity of materials, 3DHI components present new challenges for radiation testing and qualification.

The Defense Advanced Research Projects Agency (DARPA)’s Advanced Sources for Single-event Effects Radiation Testing (ASSERT) program is focused on assuring that advanced U.S. microelectronics components can operate in harsh radiation environments with the highest-possible reliability. To facilitate the development of optimally radiation-hardened (rad-hard) components – and to rapidly deliver cutting-edge tech to the warfighter – ASSERT seeks to disrupt the status quo in rad-hard design and qualification by integrating radiation testing throughout the design and development lifecycle.

The space domain’s continued growth affects both U.S. national security and economic interests. ASSERT aims to accelerate the availability of radiation-qualified, state-of-the-art components 10 times faster when compared with current approaches.

By developing sources to achieve integration of testing at the factory and lab levels, ASSERT will enable teams to iteratively improve component design and resilience. This is especially significant given emerging technologies, evolving operational conditions, and the long lead times to access the few specialized facilities capable of the heavy-ion testing required to test electronics for high radiation environments.

“Today it takes on the order of five to 10 years to design, fully qualify, and deploy a rad-hard part. If you think about processors from 10 years ago, they are at least four orders of magnitude behind modern computing performance. To speed the time to deployment, the goal is to make radiation testing an integral part of the design, fabrication, and development processes, instead of waiting until the end to do the final testing. This isn’t just about testing; it’s about enabling the warfighter. In terms of the processing and reliability of space-based assets, the disparity is tremendous between what’s available and qualified today and where we need to be. With ASSERT, we’re working to close that gap. We’ll be able to put advanced electronics into space and onto strategic platforms much faster than we can today – that’s the mission requirement.” — Dr. David K. Abe, Program Manager, ASSERT

Additional information on ASSERT may be found in this Broad Agency Announcement direct link…

Filed Under: 3D Heterogeneously Integrated (3DHI) Technologies, Components, DARPA, DARPA ASSERT Program, Microelectronics, Military, Radiation Hardening

Primary Sidebar

Most Read Stories

  • ULA's Amazon Project Kuiper now set for April 28 launch
  • Rocket Lab confirms D2C ambitions
  • Russian satellite tumbling out of control
  • ULA's launch of Amazon Project Kuiper now is YTBD
  • UPDATE: United Launch Alliance Amazon Project Kuiper launch targeting April 28

About Satnews

  • Contacts
  • History

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020

Secondary Sidebar

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkPrivacy policy
x
Sign up Now (For Free)
Access daily or weekly satellite news updates covering all aspects of the commercial and military satellite industry.
Invalid email address
Notify Me Regarding ( At least one ):
We value your privacy and will not sell or share your email or other information with any other company. You may also unsubscribe at anytime.

Click Here to see our full privacy policy.
Thanks for subscribing!